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Distortion of a finite amplitude standing wave in
an elastic panel,

By M.P. Mortell and E. Varley
Center for the Application of Mathematics
Lehigh University, Bethlehem

Abstract:

The equations governing the stretching of a nonlinear
elastic panel of finite length are integrated in the limit
when the strains are small but the strain rates are comparable
with the natural frequency of the panel. It is shown that
such a theory must be used when investigating the distortion
and decay of a disturbance which is produced by impact and
reflection. The mathematical problem involves functions
whose values repeat at a sequence of times which are separated
by a time interval which depends on the current value of the
function.

In a future paper we show that resonant vibrations can
also be treated by this theory.
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1. INTRODUCTION

Most of the results which have been obtained to describe
nonlinear effects in wavelike disturbances are valid in the
limit when the disturbance is generated by a single progressing "
wave. These results are applicable when the transmitting
medium can be regarded as of semi-infinite extent so that the :
effects of reflections from the boundaries, which excite
additional components of the disturbance, may be neglected. -
In this and future reports we investigate a class of small
amplitude phenomena whose occurrence depends on the nonlinear
interaction, either in the body of the transmitting medium
or at its boundaries, between different components of a
disturbarnce.

Only those one dimensional disturbances which are '
governed by systems of totally hyperbolic equations which are ;
of the non-dispersive type are considered, so that the
equation of state of the transmitting medium is rate independent.

When only one component of a disturbance in such a system is

excited it is generated by the passage of a simple wave. 'R
Moreover, according to classical linear theory any ’
disturbance can be thought of as generated by the passage of
nondistorting, nonattenuated simple (progressing) waves which,
in general, interact at the boundaries but not in the body

of the material. The mathematical problem consists of
determining the signals carried by these waves from prescribed
initial and boundary data. It usually reduces to solving
linear difference equations,

The small amplitude disturbances which we investigate
can roughly be divided into three classes. In class I are
those disturbances for which, to a first approximation, there
is no interaction or distortion of the component waves in
the body of the material but, nevertheless, for which nonlinear
effects are important 2+ the boundaries. That is, although
nonlinearity is of secondary importance when determining how
the component waves prupagate it is of primary importance
when determining the signals they carry. An example of such
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a situation occurs when a column of gas in a Kundt tube
is driven at a resonant frequency (see Chester [1963]).

Class II disturbances are those for which even though
the components do not interact in the body of the medium,
nonlinearity (amplitude dispersion) is not only important
at the boundaries but also may distort the signal carried
by the component waves so that shocks may form and ultimately
dissipate the disturbance. Such phenomena are usually
associated with the cummulative effect of locally small
nonlinearity. A typical example of such a disturbance occurs
during the starting problem when an elastic panel,
initially at rest, which is rigidly bonded at one end is
deformed by a periodically applied traction at the other.
According to the theory of linear elasticity, which neglects
all dissipative mechanisms, the resulting motion at any
particle is the sum of an oscillation at the natural frequency
of the panel plus an oscillation at the frequency of the
applied traction, 1In practice, however, the standing wave
component is attenuated. In a future paper, we show that
if all dissipative mechanisms are neglected everywhere but
in shock layers, the disturbance which occurs is actually
of class II and that our theory for such disturbances does
agree with observation, even at resonance.

Finally, class III disturbances are those for which
one component is affected by its interaction with the other
components which do not themselves interact. An example of
this is the Melde phenomena (see Ravleigh [1945]). There,a
transverse vibration is controlled by its interacticn with
a lower amplitude stretching wave. The frequency of the
transverse vibration is a subharmonic of that of the applied
tension. A perfectly analagous situation occurs in magneto-
hydrodynamics where the transverse magnetic field is controlled
by the acoustic wave. These disturbances are of obvious
importance in problems of control.

In this paper, as an example of a class II disturbance,
we describe the evolution of a small amplitude stretching

P
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disturbance in an elastic panel which has one plane boundary
rigidly bonded when the other parallel boundary, whose normal
motion generated the disturbance, is broughkt to rest. The
disturbance is described in terms of the variations in strain
and particle velocity in the panel at some reference time t=0
when the boundaries are at rest. Other motions which are
mathematically equivalent are that produced in an inviscid gas
when the tube in which the gas is in motion is clcsed at both
ends, and that produced in a vibrating string after both
ends are held fixed. According to classical linear theory,
if all dissipative mechanisms are neglected, the resulting
motion is oscillatory with a period determined by the ambient
sound speed a, and width L of the transmitting medium. In
practice the motion is not exactly periodic and, because no
energy is being fed into the system at the boundaries,
dissipative mechanisms will ultimately attenuate the disturbance.
Which of the many possible dissipative mechanisms is mainly
responsible for the decay will depend upon the particular
system as well as upon the details of the disturbance at t=0.
In part I of this report we describe how nonlinearity (amplitude
dispersion) produces large strain rates and ultimately shocks.,
In part II we describe how these shocks attenuate the disturbance
and produce a uniformly strained panel.

When the disturbance in the panel is produced by an
impulsive motion of one boundary the initial disturbance can
be calculated. It is generated by the passage of a simple
wave (G.I. Taylor [1941]). In section 2 we use this disturbance
to show that if M denotes the ratio of the second to first
order elastic constants and if e(t,X) denotes the strain then,
the linear theory is valid only if the amplitude of the
disturbance is small in the sense that

IMe | <<1 (1.1)
and the strain rate is small in the sense that

oe 3
Mzl <<= . (1.2)

TPOSTOA NN Sy
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In the limit when (1.1) holds but when (1.2) need not the
signal distorts and may generate shocks. In this small
amplitude finite rate 1imit'e is not, in general, obtained
as an explicit function of (X,t), as in the linear theory:
both e and t are given as explicit functions of X and some
parameter o, which is invariant at a characteristic wavelet.
Motivated by the representation of the solution in a simple
wave, in section 3 we derive a representation of the most
general disturbance in an elastic panel in the small amplitude
limit without restricting the level of the strain rate.
According to this representation the disturbance is produced
by the passage of two distorting simple waves which only
interact at boundaries.

In section 4 we show that the finite rate theory must
be us~d to discuss the evolution of the disturbance in an
elastic panel when its boundaries are held fixed. Nonlinear
difference equations are obtained for the signals carried
by the compone.it waves. These are solved exactly and a
complete representation is obtained in terms of conditions
in the panel at t=0. As an application of the theory, the
deformation which results when a boundary is moved in an
arbitrary manner over a time less than ZaO/L, and then is
held at rest, is calculated in terms of the prescribed
boundary motion of the panel. In figures 4 and 5 we illustrate
how a disturhance which at t=0 corresponds to a sinusoidal
variation in strain and zero particle velocity evolves to
form shocks. In part II we show how these shocks attenuate
the disturbance. We also generalize our results to disturbances
which are governed by general systems of hyperbolic equations.

2, LIMITATIONS OF LINEAR THEORY
We consider one-dimensional longitudinal disturbance

in an elastic material of finite reference length L. Let

x = x(X,t) (2.1)
be the position at time t, measured from one boundary X=0
of the material, of the material particle "X'" which in some
reference state, when the material was at constant density P
and constant hydrostatic pressure p,, Was at a distance X

S AR AN INEE B o 4 Tl b Teef
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from X=0. Let T(X,t) be the traction measured from this

reference state. Then, the momentum equation for the material
relates T to the material velocity

u(X,t) = x,, (2.2)
by
T,X = P U, . (2.3)
For isentropic deformations of an elastic material
T = T(e) (2.4)
is a known function of the strain
e = X,,.-1. (2.8)
In particular, for small strains we assume that
T = E[e+Me?+0(e3)]. (2.6)

A special case of an elastic material is an inviscid

polytropic gas which, for isentropic flows, has an equation
of state

= B 5Y
p=p, () (2.7)
0P,
where the density p is related to e by
p(l+e) = o . (2.8)

According to (2.7) and (2.8), for an inviscid gas

T =1p,p= Ypo[e-l%%ee+0(e3)], (2.9)
so that
E=yp, and M= - d, (2.10)

3 YV e

e e £ T as

P 5
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For algebraic convenience we choose L as the unit of
length and L/ao as the unit of time where

a = [f— (2.11)

is the sound speed in the reference state. We also take E

as the unit of stress and a  as the unit of speed. With
this scaling, (2.3) reads

R VS e

2 =

é a (e)e,X = u,, (2.12)

: where

g a2 = T'(e) = 1+2Me+0(e?). (2.13)

g Equations (2.12) and (2.13) are supplemented by the continuity
| equation

: Upy = €, (2.14)

§ which is obtained by eliminating x(X,t) from (2.2) and (2.5).

: Riemann (see Stoker [1957]) showed that if

e
cle) = I a(s)ds, = e{1+%Me+0(e2)}, (2.15)
; o
{
then, in any isentropic wave motion governed by (2.12) and !

(2.14), the combination of variables
= 1 <
f = 7[u-c(e)] (2.16)
is invariant at each a-wavelet which propagates so that
-D—"t"la = a(e), (2.17)

while the combination of variables

B N

DA

} e o - bt it <
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ke o

= %[u+c(e)] (2.18)

is invariant at each B-wavelet which propagates so that

DX

Mig = -ale). (2.19)
If
f =F(t) at X = 0.
while (2.20)
g =G(t) at X = 1,

and if an a-wavelet is tagged by the time if left X=0, while
a B-wavelet is tagged by the time if left X=1, then according
to (2.16), (2.18) and (2.20)

u = G(B)+F(a), and ¢ = G(B)-F(a). (2.21)

Classical linear theory formally appro. mates a(e)
by unity in (2.17) and (2.19). Then, (2.21) imply that

u = G(BL)+P(aL), and c¢ = G(BL)-F(a (2.22)

1)

rhere F and G are functions of the forward, and backward
linear characteristic variables

o t-X, and BL = t+(X-1). (2.23)

L
The statements (2.22) and (2.23) imply that, according to the
formal linear theory, the most general disturbance can be
regarded as the superposition of two components which do

not interact in the body of the material: a non-distorting,

non-attenuated, progressing wave moving to the right (the

a-wave), and a non-distorting progressing wave moving to the
left, (the B-wave). These components only interact at the
boundaries of the material and the mathematical problem

e - P, - - L v e Fo v e vy
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reduces to determining the signal functions F and G from

prescribed boundary and initial data. This usually involves

solving linear difference equaticns. :
Since '

a(e) = 1+Me+0(e?), (2.24)

it might be thought that the linear theory provides a good
approximation in the small strain limit when

|Me|<<1. (2.25)
Then, to a good approximation, the traction T(e) and c(e)

can be calculated from the strain according to the linear
laws

T=e, and ¢ = e. (2.26)

However, as 1s well known, the small amplitude assumption
(2.25) is not, by itself, sufficient to justify the use of
linear theory to determine the variation in e(X,t): the
strain rates must also be '"small". The most relevant

]
i
3
i
$
A
]
*

illustration of this limitation, which is important in

what follows, occurs in the signalling, or starting, problem.
Suppose that the elastic panel is rigidly bonded at X=1
while the other boundary X=0 is at rest for all times
except in the interval- -e€<t<0 when it is moved in a prescribed
way. If no shocks form, the pulse which is generated at
X=0 over this interval moves towards the boundary X=1 as

a simple wave, (see G.I. Taylor [l49if]). For at any X,
G(B)=0 for times t<ta(X)- the arrival time of the wavelet
B=1-¢ which left X=1 at the arrival of the front of the
pulse. Then, according to (Z.21)

u=F(a) and c = -F(a), (2.27)

e e AT e =

N e e i e e —— k41— e e e n Ve e W . -
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and (2.17) integrates to give
t = atX/a(e) (2.28)

for the arrival time at X of the characteristic wavelet o
which left X=0 at t=a. The wave described by (2.27) and
(2.28) is amplitude dispersed: conszant levels of u and c
are carried by characteristic wavelets each of which moves
with an invariant speed which is determined by the value of
c it carries. Linear theory predicts that in the simple

wave

c = wF(aL), = C; say,
where (2.29)
t = o +X, J
Conditions (2.27), (2.28) and (2.29), together with the
mean value theorem of differential calculus, imply that

ISE" I ) IF(GL)'F(G)'
c c
((XL'C!)
= = F'(e)l, for some 6
between ‘¢ and Or s
= D(c)X[F'(8) ], (2.30)
where
D(e) = [122L8)| = |ul[1+0(e). (2.31)

Equations (2.25), (2.26), (2.30) and (2.31) imply that the
linear theory, which neglects amplitude dispersion, yields
a good approximation to conditions in a simple wave only if
the amplitude of the signal function is small in the sense

that

|MF(t)|<<1, (2.32)

S ns
RN R ¥ -2 S
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and if the rate of change of the signal function.is small
in the sense that

|MF'(t)]<<1. (2.33)

Condition (2.32) states that the amplitude of imposed strain
nust be small compared with the magnitude of the ratio of
first to second order elastic constants, (= Y%T for a gas).
Condition (2.33) states that the amplitude oi the product of
travel time of the pulse front and the imposed strain rate
must also be small compared with the magnitude of the ratio
of first to second order elastic constants. Theories for
which the restriction (2.32) holds but the restriction (2.33)
does not are called small amplitude, finite rate theories.,

Such theories were first used to solve significani. problems

in gasdynamics by Whitham (1958 . They have been generalized,
and used to solve problems governed by general systems of
hyperbolic equations by Varley and his co-workers (iq:5),

(1671) and (1969). Up to now these theories have only been

used to investigate disturbances which are generated by
progressing waves, as in the signaling problem. In this

report we show that such theories can be generalized to account
for effects due to reflected waves. As an application,

we show that such a theory is necessary when investigating the

_decay of a standing wave, or the "shut-off" problem in an

elastic panel. In future reports we will show that resonant
wave motions can also be analyzed by the theory.

For future reference, and to motivate the mathematical
approach we use to generalize the theory, we briefly review
conditions in a small amplitude but finite rate simple wave,
To a first approximation, according to (2.26) and (2.27)

c=¢e=-u-= -F(a) (2.34)

where the arrival time t=t(0,X) of the characteristic wavelet

o ckon o -

S WP
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o« is given by (2.28), and (2.24), as

Eag s FoRi)

t-X = o+MF(c)X. (2.35)

Because the a-wave described by (2.34) and (2.35) is amplitude
dispersed, its profile distorts as it propagates. A measure

s

I i Y

of this distortion is the incremental arrival time of the
a-wavelet at X,

= = = 1

p(a,X) thy 4L o 1+MF!' (a)X. (7.36)
1
g At any a-wavelet, the ratio of the strain rate to input N
3 strain rate

i

& -1
2 = =
o e’t/e’tlx=0 e’X/e’X|X=0 p . (2°37)

According to linear theory p=l and the level of the strain
rate in the material is always bounded by its value at input. ’
This theory gives a valid approximation when

3 X<<|MF' (o) ] 7L, (2.38)

By contrast the finite rate theory predicts that if IF'CG)'>IMI-1
at some wavelet then, before the o-wave reaches X=1, p+0

at some (X,t) and the profile distorts so much that the strain
rate becomes unbounded compared with its level at input and

at least one weak shock forms. The main effect of such shocks

is to attenuate the disturbance. We will show in part II

that in an elastic material, where all.attenuating mechanisms

- ‘ are neglected everywhere but in shock layers, it is this

' shock attenuation which is actually responsible for the decay

of a standing wave,.

i Shocks attenuate a simple wave because the characteristic
wavelets, each of which carries a constant value of e and u,
coalesce into it. In fact, according to the elastic model,

if a shock is allowed to propagate into an "infinite region"

vt
B T, T

Tr
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all wavelets except those carrying vanrishingly small valucs

of u and e will coalesce into it, or some other shock, so

that ultimately the disturbance will be fully attenuated. The
equations governing conditions at a shock in an elastic
material are well known (see Varley [1Gt7}). Because they are
needed in what follows, we briefly indicate how they are
derived. If t=W{X) denotes the arrival time of the shock

at X, if a+(X) and o (X) are the characteristic wavelets
immediately ahead and behind the shock at X, then the usual
jump conditions at a weak shock imply that

WiX) = 1+ %M{F(a+)+F(a')} (2.39)

while the condition that a+ and o~ are at the shock at the

same time, together with the statement (2.34), also imply
that

W-X

o +MF (a¥)X = o +MF(a7)X. (2.40)

Once the input signal F(a) is specified, equations (2.39)
and (2.40) govern the variations in W(X), a+(X) and o (X)
at any shock. For the special case of a shock moving into

an undisturbed region, where F(a+)50 for aﬁi-e, these equations
integrate to give

(o}

X =-—5%— | F(a)da, and t = X+a #MF(a)X '
MF=(a") ] _, (2.41)

as the shock trajectory. According to.(2.41), only those
wavelets at which MF<0 can coalesce into this shock. If
¢=0 is the next zero of F(u) after a=-¢, then the amplitude
of the pulse generated at X=0 over the time interval -e<t<0

is vanishingly small at distances which are large compared
with the attenuation length,
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0
5, = -zM[ F(s)ds, (2.42)
‘-€

of the pulse. For, according to (2.41), as X/za*w the amplitude
of this pulse, and the shock,

-MF (") (2 /X) /2, (2.43)
Note that the decay in strength of the pulse as it propagates
is determined by N vhich is a measure of the total energy

content of the input signal.

3. SMALL AMPLITUDE, FINITE RATE THEORY.

In this section we show that when both the signal functions
F and G are not identically zero, the linear approximation,
(2.22) and (2.23), is valid only when their amplitudes are
small in the sense that both

IME(t) |<<1, and [MG(t)]|<<1 (3.1)
while their rates of change are small in the sense that both
IMF' (t) |<<1, and [MG* (t) |<<1. (3.2)

In (3.2) a dash denotes differentiation with respect to time
t, whose scale of measurement has been chosen so that the
travel time of a sonic front from boundary to boundary of the
material is unity. We integrate equations (2-12 ) and (©oi4)
in the small amplitude finite rate limit when the restrictions
(3.1) hold but when (3.2) need not. In contrast to the

linear theory, the finite rate theory predicts that amplitude
dispersion distorts, and that weak shocks attenuate the
disturbance. However, the two theories have one important
feature in common: the a-wave and f-wave do not interact in
the body of the material. It is this one single feature which
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nakes the standing wave problem, as well as that of
resonant motions, mathematically tractable. Lven though,
in gencral, the problem of determining the signal functions
F and G from the prescribed initial and boundary data
involves solving nonlinear difference equations, it can

be solved for these prcblems to show that the assumptions
(53.2), inherent in the linear approximation, are invalid
and that the finite rate theory must be used.

Since the equations governing any disturbance are
linear, with known coefficients, if the hodograph variables
(f,g))and (t,X), are used as independent, and dependent,
variables, this choice of variables might seem the natural
one, However, the boundary value problem associated with

the class of disturbances considered here, which requires
that

when X F'l(f)

[}
(=4
-
ct
0

while

when X G"l(g)

n
[
-
ct
]

is a formidable free boundary value problem in terms of
these variables even when the signal functions F(t) and
G(t) are knownﬁ' The hodograph description also has two
other disadvantages. It is difficult to interpret any
physical approximation in terms of these variables. For
example, the disturbance generated by a simple wave, which
is characteristic of the disturbances studied here, cannot
be described in a straightforward way in the hodograph
formalism. The second disadvantage is that the use of the
hodograph technique is limited to disturbances which are
governed by a system of two first order hyperbolic equations.

The procedure used here, which can be extended to
general systems of hyperbolic equations, is to choose
variables which are optimal for the particular component
of the disturbance which is being investigated. These
variables are different for the a-wave component and

t

Ludford [1952] tackled this formidable problem., He used
the hodograph approach to calculate the time at which shocks form.
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B-wave component of the disturbance. This approach works
because, to a first approximation, these compcnents do not
interact in thes body of the material.

3.1 The a-wave.

Motivated by the representation (2.34) and (2.35),

Eg to describe conditions in the o-wave we use («,X) as basic
3% independent variables. As basic dependent variables we
take the incremental arrival time

- p(a,X) = t, (u,X), (3.3)
| and c(a,X). In terms of these variables

£ u = c+2F(a). (3.4)
Differentiating (2.17) with respect to « at constant X,

and considering a(c) as a function of c rather than e,
ﬁ yields

OGS PSR

1
I)’X + 2 (C) c

i = 0. 3.5
é: a2(¢) ' G.5)

‘a

: Differentiating the last of equations (2.21) with respect to
‘ o at constant B yields

¢ ‘ Dc _ DX = - :

] WIB = C,a + WIB C,X = F'(a). (5.6)
.

- Since

E / p+a'l DX from (2.17),

S Dt Da]8

Y Dalg -1 DX (3.7
i ; -a Da|8 frOﬂ (2.19),

)

- DX _ a

A Dals = -5 P. (3.8)
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If (5.8) and (3.6) are usad to eliminate Chy? condition (3.5)
yields

K]
(va(c) p),y = [a(c)] %a' (c)F' (o), (3.9)

which is regarded as an equation governing the variation of
p at each a-wavelet. The characteristic condition (3.9)
is supplemented by (3.6) which, using (3.8), reads

Dc  _ 1 _ ) .
Dal|B ~ Crg za(C)pc,X = -F'(a). (3.10)

Equations (3.9) and (3.10), which are two first order
equations for p(«,X) and c(«,X), are in a form which is
specially suited for investigating conditions in an a-wave
and, in particular, how it is affected by its interaction
with the B-wave. Suppose, for example, we wish to determine
conditions in the a;wave which is generated at X=0 for times
t>0. Conditions in this wave are, in theory, determined by
the values of F(a) and c(a,1l) at values of a>0 together with
the value of ¢(0,X) for 0<X<1l, (sece fig. 1). We say that

the interaction of the B-wave with the a-wave can be neglected

if the trajectory of any wavelet a=a, is determined by F(a)
for Oiqiql and is independent of c(«,l) and c(0,X). There
is no such interaction in the small amplitude, finite rate
limit. For, without restricting F'(a), integrating (3.9)
from X=0 and using the mean value thecorem of integral
calculus together with the restriction |Mc|<<l to estimate

the error yields
p = L+ME' ()X (3.11)

as a uniformly valid first approximation for the incremental
arrival time P=t, . Equation (3.9) and the mean value
thecrem also impnlies that (3.11) can be formally integrated
to give
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t = X+a+MF(a)X (3.12)

which is a uniformly valid implicit equation for the first
approximation to o(t,X). According to (3.12), just as in a
simple wave, the trajectory of any a-wavelet depends only
on the signal F(a) it carries.

To obtain higher order approximations for conditions
in the a-wave the iteration scheme

3
(Vale) p) sy = lale )1 %2’ (c )F" (@) (3.13)
and
1
Cn+l,a-73(cn)pncn+l,x = -F'(a), (3.14)
with
Cy = 0, and P, = 1+MF' (a)X (3.15)

may be used. Higher order approximaticns may also be
obtained as the limiting case as |MF(a)|+0 of the regular
perturbation scheme in which the Riemann invariant

r = c+F(a) = e[r,(a,X)+er, (o,X)+0(e”)] (3.16)
and
v = P, (a,x)+ep, (a,X)+0(c%) (3.17)
where
e = max.|r].
Since in a simple wave r=0, (3.16) and (3.17) describe a

perturbed simple wave. Note that the perturbation is only
regular if r and p are regarded as functions of X and the

exact characteristic variable a.
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When an analysis similar to that described by equations
(3.3)-(3.12) is applied to the B-component of the disturbance
using (B,X) as independent, and (t,c) as dependent, variables,
a complete representation of conditions in any small amplitude,
finite rate disturbance is obtained. It is given by

il

u = G(B)+F(a) (3.18)

and

(]
1]

G(B)-F(a), (3.19)
where a(t,X) and B(t,X) are given implicitly by

t-X

a+MF (o) X (3.20)
and

t+(X-1)

B+MG () (X-1). (3.21)

If a(t,X) is computed from (3.20) then, in the 1limit
when MF(a)-+0 but MF'(a) is unrestricted, F(o(t,X)) is a uniformly
valid first approximation for F as a function of (t,X). More-
over, to obtain the first approximation to %% and g% in this
limit, equation (3.20) may be formally differentiated to give

ot

lim X - lim 1+MF(a) = 1
MF->0 MF-0
and
. at _ . '
lim i lim [1+MF'(0)X]
MF-+0 MF-0
¢« = 1+MF'(a)X.
To a second approximation, of course,
at

s¢ = 1-Mc = 1+M[F(a) -G(B)].

The linear theory formall? approximates o and g in (3.20)
and (3.21) by the explicit expressions

o, = t-X (3.22)
and

B. = t+(X-1) (3.23)
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This is permissable if and- only if conditions (3.1) and (3.2)

are satisfied,

4. DISTORTION OF A STANDING WAVE

In this section we use the representation (3.18)-(3.21)
to describe the disturbance in an elastic panel after its
boundaries X=0 and X=). are brought to rest., This disturbance is
described for all t>0 in terms of the variations in ¢(X) and
P(X), 0<X<1l, the values of F and G in the panel at t=0. These
are related to u and ¢ in the panel at t=0 by (3.18) and (3.19).
The nonlinear mixed initial and boundary value problem which
is solved here reduces to determining the signal functions F(a)
and G(B) from (3.20) and (3.21) in the region 0<X<1 for all
t>0 from the initial data that when t=0,

F =4¢(X) and G = $(X), 0<X<1, (4.1)
and from the boundary data that on X=0 and X=1
u = G(B)+F(a) = 0, all t>0. (4.2)

For comparison, and to motivate the steps we take to solve

the nonlinear problem, we review the argument used to construct
the solution to the linear problem. Reference to fig. 2 will
be helpful.

4,1 Linear theory

Linear theory, according to (3.22) and (3.23), predicts
that in the region 0<X<1 when t>0 the characteristic variables
(«,B) range from -1 to », To determine the signal functions
F(a) and G(B) over this range, note that the condition that
(4.2) holds on X=0 when, by (3.23),

B = a-1, a>0, B>-1 (4.3)

implies that F and G are related by the condition that

F(R)*G(R-1) = 0 when R>0. (4.4)

Similarly, the condition that (4.2) holds on X=1 when, by
(3.22),
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o = 8-1 ' (4.5)
implies that
F(S-1)}+G(S) = 0 when S§>0. (4.6)
1f G is eliminated, by taking
R = S+1, (4.7)
(4.4) and (4.6) imply that
F(S+1) = F(S-1) when S>0, (4.8)
or, equivalently, that
F(a+2) = F(a) when a>-1. (4.9)

Condition (4.9) states that F(a) is periodic with period
2 for all a>-1: if

F(a) = £f(a) when -1<a<l (4.10)
then
F(a) = £(a-2m) when 2m-1l<a<2m+l, m=0,1,2,.. . (4.11)

Similarly, G(B) is periodic with period 2 for all B>-1 so
that if

G(B) = g(B) when -1<8<1 (4.12)

then

G(B) = g(B-2n) when 2n-1<B<2n+l, =n=0,1,2,.. . (4.13)

—— o

t
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According to (3.18), (3.19), (3.22), (3.23), (4.11) and (4.13)
one representation of the solution, which as we will see is
the one most easily generalized to the nonlinear case, 1s that

u = g(s)+£f(r), and ¢ = g{s)-f(r), -1<s,r<1, (4.14)

where r(t,X) and s(t,X) are given explicitly by the conditions
that

t-(X+2m) = r when Zm-1<t-X<2m+1, m=0,1,2,.. (4.15)

while

t+(X-1-2n) = s when 2n-1<t+(X-1)<2n+1, n=0,1,2,..
(4.16)

To determine f and g in terms of ¢ and ¥ note that conditions
(4.15) and (4.16) imply that when t=0

m=n=40, and X = -r = s+], (4.17)
Since,
f=¢(X) and g = (X) when t=0, (4.18)
f(r) = ¢(-r) when -1<r<0, (4.19)
and
g(s) = Y(1l+s) when -1<s<0. (4.20)

To determine f(r) over the range 0<r<1l and g(s) over the
range 0<s<l we use conditions (4.4) and (4.6). These yield

£(r) = -g(r-1) = -y(r) when 0<r<1, (4.21)
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and
g(s) = -f(s-1) =-¢(1-s) when 0<s<1l, (4.22)

In (4.17)-(4.22) we have assumed that the boundaries
X=0 and X=1 are not suddenlx brought to rest at t=0 so
that u is single valued and equal to zero at (X,t) = (0,0)
and (X,t) = (1,0).

The statements (4.13)-(4.16) with f and g determined
from ¢ and ¥ by (4.19)-(4.22) represents a complete solution,
according to linear theory, of the posed mixed initial and
boundary value.problem. Note that, according to (4.11) and
(4.13), the linear theory predicts that if the rates of
change of F(o) and G(B) are small, in the sense (3.2), over
the range -1%0,B<1 then they remain small in this sense for
all t. Now, even though the linear theory is consistent in
this sense, it is, nevertheless, wrong.? As we show in what
follows, even if the rates of change of F(a) and G(B) over
the range -1<a,B8<l are small in the sense (3.2), ultimately,
for sufficiently large time, conditions (3.2) are always
violated and the finite rate theory must be used.

4.2 Finite rate theory.

Conditions (3.20) and (3.21) imply that in the finite rate
theory the ranges of the characteristic variables (#,B) are
(see fig. 3)

1 1
"7Po202® and -3Q <B<w, (4.23)

where

TWe mean by this that the linear theory of elasticity

makes a prediction which is in disagreement with the non-
linear theory of elasticity,
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P, = 2[1-MG(0)] and Q = 2[1+MF(0)]. (4.24)
)
To determine the signal functions F(a) and G(B) over this
range we use an argument which is similar to that used for
the linear theory. The condition that (4.2) holds on X=0
for all t = a>0 when, by (3.21),

B = a-1+MG(B),

a-1-MF(a) (4.25)

implies that

F(R)+G(R-1-MF(R))

[}

0, all R>0, (4.26)

Similarly, the condition that {4.10) also holds on X=1 for
all t = 8>0 when, by (3.20),

a = B-1-MF(a),

B-1+MG(B) (4.27)

implies that

F(S-1+MG(S))+G(S)

0, all S>0. (4,28)

To obtain a single equation for F(a) in the range
az-%Po we take

R = 1+MF(R)+S, = 1-MG(S)+S, §>0, Rz%Po (4.29)
in (4.26) to give
F(S+1-MG (8))+G(S) = 0, S§>0. (4.30)

Conditions (4.28) and (4.30) state that if

o = 5-[1-MG(S)], 20, o2-3P C(4.31)
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then
F(a)+G(S) = 0 (4.32)
and
F(a+2[1-MG(S)])+G(S) = 0, (4.33)
or, eliminating G, that
F(a+P(a)) = F(a) . (4.34)
when
P(a) = 2[1+MF(a)], all az-%Po. (4.35)

1f, by a procedure similar to that outlined above, F is
eliminated, equations (4.26) and (4.28) yield the equations

G(8+Q(8)) = G(8) (4.36)
when
Q(8) = 2[1-MG(B)], all B2-3Q, (4.37)

for the variation in G.

Equation (4.34), with P given in terms of F by (4.35), ,
is a nonlinear functional equation for F. It states that
even though F is not periodic with fixed period 2 it is in-
variant, or repeats, at a sequence of times which are
separated by an invariant time interval P=2(1+MF). In
particular, the zeros of F repeat at times which are separated
by a time interval 2. When F(B) is continuous, the solution
to (4.34) can be expressed in terms of its variations over
the range -%PoisﬁéPo where, according to (4.24), (4.31),
(4.32) and (4.35)

P = P(-%Po) ‘ (4.39)
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If

N = Ap cg<k
F(a) f(a) when ZPO;inPO (4.40)

then the solution to (4.34) 1is given parametrically by

F(a) = £(r), -gP <r<zP (4.41)
where, when
(m-%JPo§a§(m+%)Po, m=0,1,2,.. , (4.42)
r(a) is given implicitly by
a = r+2m(1+M£f(r)). (4.43)

To check that (4.40)-(4.43) does indeed represent the solution
of (4.34) and (4.35), let o_ and o .1 by the values of o in

1 1y ST 3 .
the ranges (m-3)P <o <(m+5)P  au. (m+3)P <a . <(m+x)P  which
are the images under the mapping defined by (4.42) and (4.43)

of the same parameter r so that, by (4.40),

F(o ) = F(ay) = £(r). (4.44)
Then, since
a = rv+2m(1+Mf(r))
and m (4.45)
Opeq = r+2(m+1) (1+M£ (7)) {,
Gy % = 2(1+ME(r)) = P(am) = P(am+l) (4.46)

Equations (4.44) and (4.46) state that F is equal at two
values of o whose difference in P. This agrees with the
statements (4.34) and (4.35).

In contrast to tue linear theory, the solution represented
by (4.40)-(4.43) predicts that even though the level of
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IMF(a) | is bounded by its level over the range -%Poggiépo,
the level of |MF!(a)| is not bounded by its level over this
range. In fact, at some a=a , which is an image under the
mapping (4.43) of some point r=r  at which Mf’(rc)<0,
lMF'(ac)l is unbounded. This implies that a shock forms at
X=0 at time t=a,,or somewhere else in the panel before time
t,. (How the analysis must be modified once shocks form is
discussed in part II.) To see this note that, by (4.41)
and (4.43),

F'(a) = f'(r)%% = f'(r)[1+2me'(r)]"l. (4.47)

Equation (4.47) implies that |MF'(a)| first becomes unbounded,
compared with [Mf'(r)], at some time

t,=a, = rc+2mc(1+Mf(rc)), (4.48)

where m, is the least integer which satisfies the condition
that

-1

-2MEf'(r ) =m (4.49)
for some r  in the range -%Poﬁrcgépo. Since, as we will show

when we determine f(r) in terms of conditions in the panel
at t=0,

1 _ ecl
f('ipo) = f(fPo), (4.50)
there is always some r, which satisfies (4.49) for some mc>0.
The signal function G(B) can be determined from conditions

(4.36) and (4.37) by an argument similar to that used to
determine F(a). If

G(B) = g(B) when -3Q,<B<5Q,, (4.51)

then

=
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G(B) = g(s), -3Q <5530, (4.52)
where, when
(n-3)Q <8<(n+H)Q,, n=0,1,2,... | (4.53)
s(B) is given implicitly by
B = s+2n(1-Mg(s)) (4.54)

If the statements (4.41)-(4.43) and (4.52)-(4.54) are
used to determine F(a) and G(B), (3.18)-(3.21) can be used
to represent the disturbance in the panel in terms of f and
g. It is given by

u = g(s)+f£(r), and c = g(s)-£f(r), (4.55)
where
PSP, and -Iqdsclg (4.56)
in the range
(m-%JPoﬁﬁ-%POXi(m+%)PO, m=0,1,2,.. , (4.57)

r(t,X) is given implicitly by
t-(X+2m) = r+Mf(r) (X+2m); (4.58)
in the range
(n-P)Qst+3Q, (X-1)<(n+drq , n=0,1,2 .. (4.59)
s(t,X) is given implicitly by

t+(X-1-2n) = s+Mg(s) (X-1-2n). - (4.60)
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4.3 Determination of f and g in terms of conditions in the

panel at t=0

If, when t=0,

£ = ¢(X) and g = P(X), O0<X<l, (4.61)

then f(r) is given parametrically by

-
~
1
=
\.J
=
=
o
=}
3
1]

! R[1+M§(-R)], -1<R<O, - 2P <r<0;
f(r) = . 0
{-9(R) when r = R[1-MY(R)], O<R<I, O<r<gP :
) (4.62)
g(s) is given by
|
| V(1+S) when s = S[1-My(1+5)], -1<S<0, -3Q_<s<0;
g(s) =1 (4.63)

~6(1-5) when s = S[1+Mp(1-5)], 0<S<I, Oss<hq .

In (4.61)-(4.63) £ and g are continuous because i* is assumed
that the panel is not suddenly brought to rest at t=0 so that

V(0)+¢(o) = 0, and Y(1)+¢(1) = 0. (4.64)
The results of linear theory, described in section (4.1), are
recovered by formally taking M=0 in (4.55)-(4.64).
The arguments used to establish the results (4.62) and
(4.63) parallel those already used in section (4.1) for the
linear theory, To obtain the first part of (4.62) first
note that, according to (4.57) and (4.58), when t=0 and 0<X<1
m=0 and r = -X[1+Mf(1r)]. (4.65)
However, by (4.61), when t=0

f(r) = ¢(X), 0<X<1, (4.66)

which, together with (4.65), imply the first part of (4.62).
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Similarly, to obtain the first part of (4.63) note
that (4.59) and (4.60) imply that when t=0 and 0<X<1,

n=0and s = (X-1)[1-Mg(s)1. (4.67)
However, by (4.61), when t=0
g(s) = ¥v(X) (4.68)

which, together with (4.67), imply the first part of (4.63).
It remains to establish the second parts of (4.62) and

(4.63)., To determine f(r) in the range OfygéPo we use (4.26).

This relates f at any argument in this range to g(s) at a
negative argument where it .s given by the first part of
(4.63). In fact, according to (4.26)

f(r) = -g(s) (4.69)

when

r = s+l-Mg(s), 0<r<gP., - 3Q <s<0. (4.70)
Equations (4.69) and (4.70) together with the representation
(4.63) for g(s) in the range -7Q <s<0 yields the second part
of (4.62). Finally, to determine g(s) in the range 0<s<—Q
we use (4.28) and the first part of (4.62).

The statements (4.55)-(4.60) with f(r) and g(s) given
by (4.62) and (4.63) provide a complete algebraic description
of conditions in any small amplitude finite rate disturbance
in terms of quite general conditions in the panel at t=0,

In section 6 we show that these statements are still valid
away from weak shocks whose influence is fto attenuate the
disturbance,

4.4 Determination of f and g for the impact problenm.

A problem of practical interest is the determination
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of the motion produced in an elastic panel, or bar, which is
rigidly bonded at X=1 after the other end, X=0, is suddenly
moved and then held fixed. The analagous problem in gas
dynamics is the determination of the flow in a gas filled
tube}which is closed at one end,when a piston is suddenly
moved and then brought to rest at the other. Before the
front of the disturbance reaches the boundary X=1, it is
generated by the simple wave which was described in section
2. If the duration of the motion, €, of the boundary X=0

is short in the sense that

e<2, (4.71)

that is, if u$0 at X=0 only over a time interval which is
less than that taken by a sound front to leave and return to
X=0 after reflection from X=1, the signal functions £f(r)

and g(s) can readily be expressed in terms of the motion

of the boundary X=0.

If at X=0
u = U(t), (4.72)
where
U(-€) = U(o) =0 (4.73)
and where
U=0 outside the range -e<t<0 (4.74)
then, for -e<t<l-e
F(a) = U(a) and G(B) = 0 (4.75)

so, by (3.18)-(3.21), the disturbance is generated by a simple
wave. For t>-1 (<1-¢) the disturbance is described by (4.55)-
(4.60) with

[
+
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1
u(r), for -fpoirio,

£(r) = 1 (4.76)
U(0-2) when r = 0+ZMU(0-2), 02050 , Oiriipo,
where
L smuc-dp )y =1 and o = 3p -2, 4.77)
2°¢ 20 0 20 7 .
with

g(s) = -U(r-1), when s = T+MU(T-1), -1<t<1, -1<s<I1.
(4.78)

The statements (4.76)-(4.78) are readily established by using
arguments similar to those used in section (4.3).

B
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5. DISCUSSION AND APPLICATIONS

In section 3 we pointed out that the linear approximation
to F as a function of (t,X) is valid only if |MF(t)| and |MF'(t) |
are small compared with unity. However, as for the standing
wave problem discussed in section 4, in most applications F
is not known a priori but must be calculated as a solution
to some difference equation. An obvious question which arises
is what are the restrictions which must be imposed on F which
allow the difference equation to be replaced by the difference
equation which is predicted by linear theory. There is no
reason to assume that they are the same as those which allow
F(:) to be approximated by F(t-X): the restrictions will
depend on the particular problem being investigated. To
illustrate this point, we derive the conditions which allow
the solution to the nonlinear difference equation (4.34) and
(4.35), which is given by (4.41)-(4.43), to be approximated
by the solution to the linear difference equation (4.9).

For convenience we take P0=2, (this is always possible
by a suitable choice of reference configuration). Then, (4.40)
and (4.43) imply that

F(t) = £f(r), -1<r<1, (5.1)
where r(t) is given by
t = r+2m(1+Mf (r)). (5.2)
The lin=ar theory predicts that
FL(t) = f(rL), (5.3)
where
r, = t-2m = r+2mMf(r). (5.4)

According to (£.1)-(5.4), and the mean value theorem of

oars
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differential calculus,

Ful £ £ . .
IFey - l R -+ o md Pl |2mMf (8) |, (5.5)
for some 6 between T and . According to (5.5) only when

max. | 2mMf' (8) |<<1 (5.6)

does the solution FL(t) to the linear difference equation
approximate the solution F(t) to the nonlinear difference

equation. Since
ME'(t) = MEf'(r)/1+2mME' (1), (5.7)

for all times at which (5.6) is satisfied the small rate
assumption |MF'(t)|<<l is also satisfied, so that F(a) can
be approximated by F(t-X). However, the converse is not
true. Even though |MF'(t)]|<<1 over some time interval the
restriction (5.6) need not hold: even though the distortion
of the signal carried by the a-wavelets may be neglected for
some time, (i.e. F(a) = F(t-X)), nevertheless, it does not
follow that amplitude dispersion (nonlinearity) may also be
neglected in calculating the signal carried. According to
(5.6) and (5.7) a restriction on MF'(t) which allows the
~olution of the nonlinear difference equation tec be approximated
by the solution to the linear difference equation is that

MF'(t)

_ <<1, (5.8)
(2m) " -ME' (t)

Chester [1963] has shown that small amplitude resonant
vibrations can also be investigated by a theory in which
amplitude dispersion can be neglected in the body of the
transmitting material but not in the calculation of the
signal which is carried, (which contains shocks!) 1In a
future paper we show, however, that the more general finite
rate theory must be used to investigate conditions in the
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resonant band and also to investigate the approach to resonance.

We have not shown that the solution to the nonlinear
difference equation (4.34) and (4.35) does, in fact, itself
approximate the solution to the exact equation satisfied by
F in the limit when MF+0. Presumably, this question could
be resolved by using the hodograph representation of the solution.
However, in partial support of our assumption that it does,
we note that there is an equation of state for which the difference
equation can be solved exactly so that the question can be

answered. This is the equation of state for which the co-
efficient of F'(a) in (3.9)

3 .
[a(c)] 2a'(c) = constant, = M say.' (5.9)

By a suitable choice of E and M this equation of state can

be used to locally approximate many other equations of state
when investigating small amplitude phenomena which depend on
the magnitudes of both the local tangent and curvature of the
stress/strain curve. When (5.9) is used, equation (3.9}
integrates to give

3L = (1-2Mc) (@ () +MXF " (o), (5.10)

The function a(a) is determined as a function of F(a) from
the conditions that

on X =0: t=¢0a, u=0 and c = -2F(a): (5.11)

it is given by

TThe equation of state (5.9) is an excellent approximation
to the actual stress/strain curves of a wide variety of "locking
materials" over the full range of strain. It is currently

being used by Cekirge and Varley to investigate large amplitude
waves in such materials.
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o = [1+MF(a)] L. (5.12)
Similarly,
ot _ 1 = '
3g = (1-aMc) {B(B)+M(X-1)G'(8)} (5.13)

where B is determined as a function of G(B) from the condition
that

0 and c

on X=1: t=8, u 2G(B): (5.14)

it is given by

B = [1-MG(B)] L. (5.15)

If now (5.10) is integrated at X=1 and if the condition
that

on X =1, c = 2G(B) = -2F(a) (5.16)

is used we ob*ain the condition that

on X =1, t= art +MF(a)[1+3MF(a)], (5.17)
for some constant tl' Similarly, (5.13) and the conditions
that

on'X = 0: c = -2F(a) = 2G(B) (5.18)
implies that .
on X = 0: t = B+t -MG(8) [1+MG(8)] (5.19)

when t, is a constant. If now the three conditions (5.11),
(5.18) and (5.19) on X=0 are used, together with the three
conditions (5.14), (5.16) and (5.17) on X=1, then, by using
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arguments which are similar to those used in section 4.2, a
nonlinear difference equation for F is obtained. Quite
remarkably, if the strain is measured so that tl+t2=2, the
exact equation for F is identical to that given for F by
(4.34) and (4.35). That is, equations (4.34) and (4.35),
which we hope are good approximations for any equation of

state in the limit when MF+0, are exact for the equation of
state (5.9) for any level of MF.

5.1 Associated pure initial value problem

One prediction of linear theory is that the solution
to the mixed initial and homogeneous boundary value problem,

which is giver in section 4,1, can also be derived as part
of the solution to a pure initial value problem in the
region -o<X<», The initial values of F and G for this
associated problem are periodic functions of X (all X) with
fixed period 2 and with

F = £(-X) for -1<X<i, (5.20)

Y

and with

(]
i

g(X-1) for 0<X<2, (5.21)

where £ and g are given by (4.62) and (4.63) with M=0. The
form of the dependence of f and g on u and c imply that the
initial values of u and c for this associated problem are
also periodic in X and, in addition, that u is odd, while ¢
is even, with respect to both points X=0 and X=1.

According to the representation (4.55)-(4.60) the
solution to the nonlinear mixed initial-boundary value
problem can also b. constructed from the solution to a non-
linear pure initial value problem. Moreover, the initial
values, ®(X) and ¥(X), of F and G for the associated problem
are obtained from their prescribed values, ¢(X) and ¥ (X),
over the range 0<X<1 by the identical procedure used in
linear theory. For, (4.58) states that
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1P <regP,  -esXcw (5.22)

o(X) = £(r), o—1=7%0

where r(X) is given by the condition that

X+2m = - T?M§TFT when -2m-1<X<1-2m, m = ,.-1,0,1,..
(5.23)

According to (5.22) ¢ is invariant, or repeats, at values of
X which are the images under the mapping (5.23) of the same
parameter r but different values of m, Any two neighboring
points of this sequence are at a fixed distance of 2 units

(twice the width of the panel) apart irrespective of the value
of r so that

o (X+2) = ¢(X). (5.24)

In a similar fashion, it can be shown that at any later

time F is still periodic in X with fixed period 2, It follows
that even though the solution to the associated initial

value problem is not periodic in time, as in the linear
theory, it is periodic in X.

5.2 Distortion of a normal mode.

Another representation of any solution to the linear
problem is as a sum of its noninteracting, nondistorting,
Fourier modes. For a nonlinear system, however, the separate
Fourizr components into which any initial disturbance can
be decomposed do interact so that in the finite rate theory
this representation is invalid. In fact, even a pure initial
sinusoidal disturbance will distort in time, generating
higher harmonics, until shocks form . These ultimately
attenuate the disturbance. In part II of this report we
show that the ultimate equilibrium state of the material

is a state of rest in which the strain is uniform and is
given by

.
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;

&y = [“e(t,X)dx. (5.25)
o

(eM is independent of time because the width of a panel

which is held fixed at both boundaries does not change.)

This final configuration, in which the shocks have smeared

out all spatial inhomogeneities, is an appropriate reference

configuration from which the strain and stored elastic energy

should be measured. With this convention

e, = 0. (5.26)

This reference configuration is attained as the asymptotic
limit of a sequence of deformation for which, between shocks,

essentially
g% = %% =0 (5.27)
while
%% = g% = constant. (5.28)

Asymptotically, for "iarge" time, at any fixed time, the
profile of u against X is a series of N-waves and that of e
against X a series of square waves; at any fixed X, however,
the profiie of u against t is a series of square waves and
that of e against t a series of N-waves.

In figures 4 and 5, as an illustration of the theory,
we show how the disturbance corresponding to the initial

conditions
u=0 and Me = —i~(sinmX-2) (5.29)
100 T *
(e is measured to have zero mean) develops. We graph the

variations of Mu and Me as functions of X at times which
correspond to 8 and 14 vibrations according to linear theory.

-
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At these times linear theory predicts u and e are again
given by (5.23). Note how the profiles are approaching the
asymptotic profiles given by (5.27) and (5.18) and that
there is a tendency to equipartion energy between kinetic
and potential energy. This will be discussed in greater
detail in part II.
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